If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(50y^2)-(350y)+(600)=0
a = 50; b = -350; c = +600;
Δ = b2-4ac
Δ = -3502-4·50·600
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-350)-50}{2*50}=\frac{300}{100} =3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-350)+50}{2*50}=\frac{400}{100} =4 $
| 5t^2-5t-3=0 | | 3-5(2-7x)=0 | | k/(-7/2)=23/5 | | 12-5a=3(-6-5a) | | -(x+5)-6=-9(×-3)-2 | | 3x-2x-2=11 | | 7(5n+3)-8=8n-14 | | 150s+225s+3.50=2000 | | 6-4(9x+7)=3 | | -3(1=3r)=2r+39 | | 150s+225(s+3.50)=2000 | | 2a-5(a-8)=a+16 | | 2(2w+3+w)=78 | | -(n-4)=4-n | | 3x+3+12=30 | | 5x+x=x+16-x | | 8x-4x13=5x44-x | | -16.42+0.4y-8.52=19.46+4.4y | | 2(k-4)=-4+9(k-1) | | 2/7(-2x-4)=5 | | 150s+225s=2000 | | 4-8x+5)=-32x-26 | | -4(2x+3)=5 | | -16.42+0.4y-8.52=19.46)6+ | | 1/2(-6/5x+10)=4 | | 0=7x²+x+5 | | z+0.5z=1 | | 8-8p=-15-9-6p | | 7(6n+2)=8n-20 | | 33+0.33=0.88x | | 4(4x-8)=8(2+2x) | | 5x+17×3-2x=10 |